Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Vijayakumar N. Sonar, ${ }^{\text {a }}$ M.
Venkataraj, ${ }^{\text {a }}$ Sean Parkin ${ }^{\text {b }}$ and Peter A. Crooks ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and ${ }^{\text {b }}$ Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA

Correspondence e-mail: pcrooks@uky.edu

Key indicators

Single-crystal X-ray study
$T=90 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.128$
Data-to-parameter ratio $=10.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(Z)-2-(4-Methylbenzylidene)-1-azabicyclo-[2.2.2]octan-3-one

The title compound, $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}$, was synthesized by basecatalyzed condensation of 4-methylbenzaldehyde with 1-azabicyclo[2.2.2]octan-3-one and crystallization of the product from ethyl acetate. The geometry of the $\mathrm{C}=\mathrm{C}$ bond is Z.

Comment

The title compound, (I), was prepared by base-catalyzed condensation of 4-methylbenzaldehyde with 1-aza-bicyclo[2.2.2]octan-3-one and the resultant product was crystallized from ethyl acetate to afford a single geometric isomer. The present X-ray crystallographic determination was carried out in order to obtain more detailed information on the conformation of the molecule and to confirm the geometry of the double bond.

(I)

Fig. 1 shows a view of (I), and selected geometric parameters are presented in Table 1. In the title compound, the $\mathrm{C} 1-\mathrm{C} 7$ bond is in a trans disposition with respect to the $\mathrm{C} 8-$ C 13 bond. Deviations from ideal bond-angle geometry around the Csp ${ }^{2}$ atoms of the double bonds are observed. The bond angles $\mathrm{N} 9-\mathrm{C} 8-\mathrm{C} 13, \mathrm{C} 7=\mathrm{C} 8-\mathrm{N} 9$ and $\mathrm{C} 8=\mathrm{C} 7-\mathrm{C} 1$ (Table 1)

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Received 6 November 2006
Accepted 16 November 2006
are distorted because of the steric hindrance of the double bond linking the 4 -methylphenyl ring with the azabicyclic moiety. These deviations contribute significantly to the relief of the intramolecular non-bonded interactions present in this portion of the molecule. The $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7=\mathrm{C} 8$ torsion angle indicates the deviation of the double bond from the plane of the benzene ring. However, the $\mathrm{C} 1-\mathrm{C} 7$ bond length suggests conjugation of the $\mathrm{C} 7=\mathrm{C} 8$ bond π electrons with those of the 4-methylphenyl ring (Wilson, 1992).

Experimental

The title compound was prepared according to the previously reported procedure of Sonar et al. (2003). Crystallization from ethyl acetate afforded yellow crystals.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO} \\
& M_{r}=227.30 \\
& \text { Orthorhombic, } P 2_{1} 2_{2} 2_{1} \\
& a=5.8527(2) \AA \\
& b=9.9840(3) \AA \\
& c=20.3309(6) \AA \\
& V=1188.00(6) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.271 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=90.0(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.25 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD area-detector
\quad diffractometer
ω scans
Absorption correction: multi-scan
$\quad(S C A L E P A C K$; Otwinowski \&
Minor, 1997)
$T_{\min }=0.980, T_{\max }=0.982$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.128$
$S=1.07$
1602 reflections
155 parameters

[^1]Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 7$	$1.468(3)$	$\mathrm{C} 8-\mathrm{C} 13$	$1.498(3)$
$\mathrm{C} 4-\mathrm{C} 16$	$1.510(3)$	$\mathrm{N} 9-\mathrm{C} 10$	$1.484(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.332(3)$	$\mathrm{O} 13-\mathrm{C} 13$	$1.221(3)$
$\mathrm{C} 8-\mathrm{N} 9$	$1.438(3)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$123.5(2)$	$\mathrm{C} 8-\mathrm{N} 9-\mathrm{C} 10$	$108.6(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 1$	$129.2(2)$	$\mathrm{O} 13-\mathrm{C} 13-\mathrm{C} 8$	$125.1(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 9$	$125.5(2)$	$\mathrm{O} 13-\mathrm{C} 13-\mathrm{C} 12$	$124.5(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$120.8(2)$	$\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 12$	$110.4(2)$
$\mathrm{N} 9-\mathrm{C} 8-\mathrm{C} 13$	$113.62(19)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-27.5(4)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13-\mathrm{O} 13$	$0.0(4)$
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$179.0(2)$		

H atoms were found in difference Fourier maps and subsequently placed in idealized positions, with constrained $\mathrm{C}-\mathrm{H}$ distances of 1.00 $\left(R_{3} \mathrm{CH}\right), 0.99\left(R_{2} \mathrm{CH}_{2}\right), 0.98\left(\mathrm{RCH}_{3}\right)$ and $0.95 \AA\left(\mathrm{Csp}^{2}\right) . U_{\text {iso }}(\mathrm{H})$ values were set to either $1.5 U_{\mathrm{eq}}$ of the attached C atom $\left(\mathrm{CH}_{3}\right)$ or $1.2 U_{\text {eq }}$ for all other H atoms. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXL97 and local procedures.

This investigation was supported by the National Cancer Institute, grant No. PPG NIH/NCI PO1 CA104457-01 A1.

References

Nonius (1999). COLLECT. Nonius, BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick (1995). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2003). Acta Cryst. E59, o1726-o1728.
Wilson, A. J. C. (1992). Table 9.5.1.1 in International Tables for Crystallography, vol. C. Dordrecht: Kluwer Academic Publishers.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: H -atom parameters constrained
 $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0819 P)^{2}\right]$
 where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\text {max }}<0.001$ 。
 $\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{-3}$
 $\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

